Cellular mechanisms of hepatocyte growth factor-mediated urokinase plasminogen activator secretion by MAPK signaling in hepatocellular carcinoma.
نویسندگان
چکیده
AIMS AND BACKGROUND The hepatocyte growth factor, its receptor c-Met, and urokinase-type plasminogen mediate various cellular responses on activation, including proliferation, survival, invasion, and metastasis. The regulatory mechanisms for the proliferation and the particular invasive phenotypes of hepatocellular carcinoma are not yet fully understood. In order to clarify the intracellular downstream signal for hepatocyte growth factor/c-Met signaling in tumor progression and metastasis in hepatoma, we determined the effects of a specific MEK1 inhibitor (PD 098059) and a p38 kinase inhibitor (SB 203580) on hepatocyte growth factor-mediated cell proliferation and urokinase-type plasminogen expression in hepatoma cell lines (HepG2 and Hep3B). RESULTS Hepatocyte growth factor treatment induced the phosphorylation of ERK and p38 kinase in a dose-dependent manner, resulting in an early peak of phosphorylation at 3 to 10 min, which then rapidly decreased to a near basal level. Pretreatment with PD 098059 reduced hepatocyte growth factor-mediated cell proliferation and urokinase-type plasminogen secretion. In contrast, SB 203580 pretreatment enhanced cell proliferation and urokinase-type plasminogen secretion due to induction of ERK phosphorylation. Treatment with PD 098059 and SB 203580 resulted in a decrease in phospho-ERK activity. Stable expression of dominant negative-MEK1 in HepG2 cells showed a decrease in hepatocyte growth factor-mediated urokinase-type plasminogen secretion. CONCLUSIONS Such results suggest that interaction of an MEK/ERK and a p38 kinase might be critical in intrahepatic invasion and metastasis of human hepatoma cells.
منابع مشابه
Hepatocyte Growth Factor/c-Met Signaling in Regulating Urokinase Plasminogen Activator in Human Stomach Cancer: A Potential Therapeutic Target for Human Stomach Cancer
BACKGROUND Up-regulation of the hepatocyte growth factor (HGF), its transmembrane tyrosine kinase receptor (c-Met), and urokinase type plasminogen activator (uPA), is associated with the development and metastasis of various types of cancers. However, the mechanisms by which HGF/c-Met signaling mediates cancer progression and metastasis are unclear. METHODS We investigated the roles of HGF/c-...
متن کاملPlatelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells.
Platelet-derived growth factor (PDGF) protein family members are potent mitogens and chemoattractants for mesenchymal cells. The classic PDGF ligands A and B are single-domain protein chains which are secreted as active dimers capable of activating their cognate PDGF receptors (PDGFRs). In contrast to PDGFs A and B, PDGF D contains an N-terminal complement subcomponent C1r/C1s, Uegf, and Bmp1 (...
متن کاملLysophosphatidic acid induction of urokinase plasminogen activator secretion requires activation of the p38MAPK pathway.
Lysophosphatidic acid (LPA) is an important intercellular signaling molecule involved in a myriad of biological responses. Elevated concentrations of LPA are present in the ascites and plasma of ovarian cancer patients suggesting a role for LPA in the pathophysiology of ovarian cancer. We have demonstrated previously that oleoyl (18:1) LPA at concentrations present in ascites induces the secret...
متن کاملSnail mediates invasion through uPA/uPAR and the MAPK signaling pathway in prostate cancer cells
Epithelial-mesenchymal transition (EMT) is a process by which cancer cells acquire mesenchymal properties, such as induction of vimentin, while epithelial-associated genes like E-cadherin are lost. This enables cells to be more metastatic. Factors that are able to induce EMT include growth factors such as transforming growth factor-β (TGF-β) and epidermal growth factor, and transcription factor...
متن کاملRegulation of the synthesis and activity of urokinase plasminogen activator in A549 human lung carcinoma cells by transforming growth factor-beta
Transforming growth factor-beta (TGF beta) is a regulator of cellular proliferation which can alter the proteolytic activity of cultured cells by enhancing the secretion of endothelial type plasminogen activator inhibitor and affecting the secretion of plasminogen activators (PAs) in cultured fibroblastic cells. We used the TGF beta-responsive malignant human lung adenocarcinoma cell line A549 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tumori
دوره 94 4 شماره
صفحات -
تاریخ انتشار 2008